• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 19, No 1 (2016)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Microbial-induced remediation of Zn2+ pollution based on the capture and utilization of carbon dioxide | Zhan | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2015.11.003
Electronic Journal of Biotechnology, Vol 19, No 1 (2016)

Microbial-induced remediation of Zn2+ pollution based on the capture and utilization of carbon dioxide

Qiwei Zhan, Chunxiang Qian



Abstract

Background: Microbial-induced remediation of Zn2 + pollution based on the capture and utilization of carbon dioxide was investigated. In this study, carbon dioxide was absorbed and transformed into carbonate ions under the enzymatic action of Paenibacillus mucilaginosus, which was being utilized to mineralize Zn2 +.

Results: The compositional and morphological properties of the precipitations were studied using Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The thermal properties of the precipitates were investigated by thermogravimetric-differential scanning calorimetry (TG-DSC). The FTIR results confirmed that the functional groups of the precipitates were CO32 - and OH-. The XRD and EDS patterns showed that basic zinc carbonate could be obtained successfully by Microbial-induced remediation. The SEM micrographs demonstrated that the precipitates were in the nanometer range with sizes of 100-200 nm and were sphere-like in shape.

Conclusions: The TG-DSC results showed that weight loss of the precipitates occurred around 253°C. The FTIR and TG-DSC results were in accord with the XRD and EDS results and proved again that the precipitates were basic zinc carbonate. This work thus demonstrates a new method for processing Zn2 + pollution based on the utilization of carbon dioxide.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology