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Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy
multistage process with low yields.
Results: To improve the process efficiency for production of IMOs, we developed a simple and efficientmethod by
using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus
licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran β-amylase, and α-transglucosidase from
Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied
starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose,
isomaltotriose, and panose) were produced.
Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive
alternative to the process presently in use.
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1. Introduction

Isomalto-oligosaccharides (IMOs) are glucose oligomers with
α-D-(1,6)-linkages, with or without α-(1 → 4) linkages [1], that include
isomaltose, panose, isomaltotriose, isomaltotetraose, isomaltopentaose,
nigerose, kojibiose, and higher branched oligosaccharides [2,3].
In addition, this definition has been extended to include
glucooligosaccharides linked by α-(1 → 6) linkage and/or a lower
proportion of α-(1 → 3) (nigerooligosaccharides) or α-(1 → 2)
(kojioligosaccharides) glucosidic linkages found in commercial IMO
products [4,5,6,7] and IMO-like products. For example, branched IMOs
known as glucooligosaccharides are produced using dextransucrase [8];
oligodextran by controlled-hydrolysis of dextran [9]; nonreducing
IMO alditols by dextransucrase-catalyzed glucosylation of alditols
such as glucitol, mannitol, maltitol, and IsomaltR [10], isomaltulose or
palatinose (α-D-Glc p-(1 → 6)-α-D-Fru f) [11], and cyclic IMOs [12].
Thus, IMO structure is characterized by the IMOs degree of
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polymerization (DP) (from 2 to ∼10), type of linkages (α-1-2, 3, 4,
or 6), and the proportion and position of each type of linkage. The most
abundant and well-recognized functional components in IMOs are
isomaltose/α-D-Glc p-(1 → 6)-α-D-Glc p, isomaltotriose/α-D-Glc
p-(1 → 6)-α-D-Glc p-(1 → 6)-D-G1c p, and panose/α-D-Glc p-(1 →
6)-α-D-Glc p-(1→ 4)-D-Glc p, collectively abbreviated as iMTP [3].

IMOs are of considerable interest in the food, pharmaceutical, and
cosmetic industries because of their unique properties such as low
viscosity, resistance to crystallization, reduced sweetness, and
bifidogenic effects. The most important property of IMOs and the key
to their success is their prebiotic property that is responsible for their
beneficial effects, including better intestinal health, mineral absorption,
cholesterol regulation, and immunity and prevention of and resistance
to various diseases such as dental caries. IMOs are also used as
substitute sugars for patients with diabetes [13,14]. IMOs are normal
components of the human diet and occur naturally in many fermented
foods, including rice miso, soy sauce, and sake [15]. Isomaltose has also
been identified as a natural constituent of honey [16].

Most commercial IMOs are enzymatically produced from starch
through transglycosylation [2,3]. The typical commercially scaled
starch-as-substrate process includes the following enzymatic
processes: (1) starch is liquefied to form maltodextrin with bacterial
sting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-
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or thermotolerant α-amylase (EC 3.2.1.1); (2) fungal α-amylase
or β-amylase (EC 3.2.1.2) is used for saccharification to generate syrup
with approximately 40–50% maltose and maltotriose [pullulanase
(EC 3.2.1.41) may also be used in this step to obtain higher
maltose solution with residual maltodextrins with low DP]; and
(3) transglycosylase such as Aspergillus niger α-transglucosidase
(EC 2.4.1.24) is used for IMO synthesis.

Improved efficiencies of IMO preparations have been reported by
optimizing the coupled effects of enzymes used in the manufacturing
process. Maltogenic amylases (EC 3.2.1.133) from various bacteria
have been shown to exhibit both α-(1,6)-transglycosylation and
α-(1,4)-hydrolysis activities [17,18,19]. The coupled transglycosylation
and hydrolysis activities of maltogenic amylases [20] have been used
to produce IMOs from liquefied starch in a more efficient way than
the conventional three-step process, resulting in a significant increase
in the maximum yields of IMOs. Further improvement of IMO
yields from liquefied starch was observed with the combined use
of maltogenic amylase from Bacillus stearothermophilus ET1 and
α-glucanotransferase (EC 2.4.1.25) from Thermotoga maritima with
α-(1,4)-glycosidic bond transferring ability [21]. Production of
long-chain IMOs from maltotriose has been reported using the
thermostable amylomaltase and transglucosidase in combination,
although, separately, amylomaltase resulted in products containing
linear malto-oligosaccharides (MOSs) and transglucosidase resulted in
short-chain IMOs [22]. In addition, Corynebacterium glutamicum
amylomaltase was used to produce palatinose glucosides through the
acceptor specificity of its intermolecular transglycosylation activity
[23]. NMR analysis showed that the major products palatinose
glucoside 1 and 2 were a tri- and tetra-saccharide, respectively, with
the structure [O-α-D-glucopyranosyl-(1 → 4)]n-O-α-D-glucopyranosyl-
(1 → 6)-D-fructofuranose, where n = 1 or 2 [23]. No commercial
application, however, has been reported using these improved
processes or enzymes.

Although several new enzymeswith desirable activities as described
earlier have potential applications in IMO preparation, many aspects of
the current IMO manufacturing need to be further improved or
innovated because of its low substrate conversion rates, lengthy
transglycosylation step, and undesirable enzyme usage/formula.
In this study, using an enzyme cocktail composed of Bacillus
amyloliquefaciens α-amylase (BAA), barley bran β-amylase (BBA),
recombinant Bacillus naganoensis pullulanase in Bacillus licheniformis
(PulA), and A. niger α-transglucosidase (An-TGase), the optimization
of each step of IMO production including starch liquefaction,
saccharification, and transglycosylation was investigated to develop
novel processes for efficient IMO production.

2. Materials and methods

2.1. Enzymes and activity assay

The enzymes used in this study were BAA [24], thermostable
α-amylase from licheniformis (BLA) [25], BBA, PulA [26], and An-TGase
[27]. BLA (40,000 U/mL), BAA (2000 U/mL), and PulA (2000 U/mL)
were obtained from Fujian Fuda Biotech Development Co., Ltd., China;
BBA (700°DP/g) and An-TGase (360,000 U/g) were obtained from
Jiangsu Ruiyang Biotech Co., Ltd., China.

The respective enzyme preparation activities were measured
according to the methods described previously [25]. For BAA, one
enzyme unit was defined as the amount of enzyme required to
hydrolyze 1 g of starch in 1 h at pH 6.0 and 60°C. For BLA, one enzyme
unit was defined as the amount of enzyme required to hydrolyze 1 mg
of starch in 1 min at pH 6.0 and 70°C. PulA activity was determined
according to the manufacturer instructions under the following
conditions: the reaction mixture contained 0.1 mL of 0.5% (w/v)
Red-Pullulan as substrate (MegaZyme, Co. Wicklow, A98 YV29,
Ireland), 0.05 mol/L Tris–HCl buffer (pH 5.0), and 0.2 mL of enzyme
solution incubated at temperature of 40°C for 30 min. Then the
reaction was stopped by adding 0.5 mL of ethanol; after holding for
10 min, the reaction mixture was centrifuged at 12000g for 2 min, and
the absorbance of the supernatant was measured at 510 nm OD with
water as the control. For PulA, one enzyme unit was defined as the
amount of enzyme required to release reducing sugar equal to 1 μmol
glucose from 1 mL of 0.5% (w/v) Red-Pullulan in 1 min under the
above reaction conditions. BBA activity was determined according to
the protocol described in the fifth edition of Food Chemicals Codex
[28]. One enzyme unit, expressed as degrees of diastatic power (°DP),
was defined as the amount of enzyme in 0.1 mL of a 5% solution of the
enzyme preparation that will produce sufficient reducing sugars to
reduce 5 mL of Fehling's solution when the sample is incubated with
100 mL of the substrate for 1 h at 20°C. An-TGase activity was
determined according to a previously described method [27]. One
enzyme unit was defined as the amount of enzyme required to form
1 μg of glucose in 1 h at pH 5.0 and 50°C.

2.2. Determination of pH and temperature optima

To determine the optimum temperature, the activities of the
enzymes were measured at various temperatures ranging from 30°C
to 80°C. To determine the optimum pH, the enzymatic activity was
measured at the above temperatures under different pH conditions:
pH 4.0–5.5 using acetate buffer and pH 6.0–7.5 using phosphate buffer.

2.3. Production of IMOs

For enzyme selection and parameter optimization, IMOs were
prepared in a 500-mL reactor as follows: (1) Starch liquefaction: this
step was performed using 25% (w/v, dry starch weight) corn starch
slurry and 200 U/g (dried starch) of BLA at pH 5.8 and ~100°C for
different time periods, and the samples were collected and the
dextrose equivalent (DE) values were determined as described in
Section 2.4. (2) Saccharification: When the reaction mixture was
cooled to 55°C, a combination of enzymes was added to prepare
MOS-rich syrup. The reference values of each enzyme (calculated
based on dry substrate starch) are BBA 0.1°DP/g and PulA 0.1 U/g.
(3) Transglycosylation: An-TGase was added to the reaction mixture
(500 U/g dried starch), and the reaction was performed at 55°C for up
to 30 h. For single parameter optimization, the above parameters for
IMO preparation were fixed except for changes in one parameter. For
the scaling-up preparation of IMOs in a 10-L reactor, 25% (w/v)
liquefied corn starch with a DE value of approximately 25 was used
as substrate and the last two steps, i.e., saccharification and
transglycosylation, were combined and conducted at 55°C. The
samples were collected, and the enzymes were inhibited by adjusting
the pH to 9.0 with 1 mol/L sodium hydroxide and incubating at 100°C
for 10 min.

2.4. Analytical methods

Total dry matter was determined as described previously [28]. The
DE value of liquefied starch was determined by the titrimetric method
with glucose as the reference, as described previously [29]. The
content and components of IMOs and the sugar profiles during IMO
preparation were analyzed according to a previously described
method with some modification [30]. Briefly, the analysis was
performed on an HPLC system (Agilent 1200 Series HPLC System)
with an evaporative light-scattering detector (Alltech ELSD detector
2000s, Grace Co. Ltd.) using a TSKgel Amide-80 column (4.6 mm
IDx250 mm, 5 μm, Tosoh, Japan). Acetonitrile:water (67:33, v/v) was
used as solvent at a flow rate of 1 mL min-1 at 30°C. Glucose (G1) and
maltose (G2) used as HPLC standards were purchased from Shanghai
BioTech Co. Ltd., China. Isomaltose (IG2), maltotriose (G3),
isomaltotriose (IG3), panose (P), maltotetraose (G4), maltopentaose



48 D. Niu et al. / Electronic Journal of Biotechnology 26 (2017) 46–51
(G5), and maltohexaose (G6) used as HPLC standards were purchased
from Sigma (St. Louis, MO). The MOS and IMO references were
obtained from Jiangsu Ruiyang Biotech Co. Ltd., China.

iMTP value, a measure of the IMO content, was calculated as the
percentage of the combined amounts of IG2, IG3, and P in the dried
matter. The specific value of iMTP was calculated as iMTP (%, w/w)
divided by the reaction time.

3. Result and discussion

3.1. Effects of the degree of starch liquefaction on IMO yield

It is well established that the liquefaction degree of starch affects the
quality and quantity of its final sugar products. For example, a certain
degree of starch liquefaction (~DE 12) is required for higher glucose
content formation during high-glucose syrup manufacturing, and a
much lower degree of starch liquefaction (~DE 6 ~ 8) is preferred for
higher maltose content during maltose syrup preparation [31].
However, in IMO preparation, not only maltose but also maltotriose
and other MOSs formed during the starch liquefaction and
saccharification are the main precursors of IMOs and favorite
substrates for transglycosylation with An-TGase [32,33,34,35,36]. We
therefore determined the effect of starch liquefaction degree on IMO
formation. Starch slurry of 25% (w/v) was liquefied at different times
using BLA at 100°C, and liquefied starch with DE values of 12, 20, or
30 was obtained. PulA, BBA, and An-TGase were then added, and
the reaction mixture was incubated at 55°C for up to 24 h. The
sugar profiles were analyzed and are summarized in Fig. 1, which
shows that increasing starch liquefaction degree shortened the
transglycosylation time required for maximum yields of iMTP,
indicating that well-liquefied starch was more beneficial to IMO
formation with increased yields per reaction time.

3.2. pH and temperature optima for simultaneous saccharification and
transglycosylation in the preparation of IMOs

During the saccharification and transglycosylation steps of IMO
production, BBA or PulA can be used to generate more maltose and
MOSs, which serve as substrates for An-TGase. However, each enzyme
has its own pH and temperature optimum. Studies have shown that
BBA shows maximum activity at pH 5.5 and 55°C [35], PulA at pH 4.5
and 60°C [36], and An-TGase at pH 4.5 and 60°C [32]. We evaluated
the properties of these commercially available enzymes in this study
(Fig. 2) and found that the values either agreed with or deviated only
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Fig. 1. Effect of starch liquefaction degree (DE) on the yield and specific production of
isomaltose, isomaltotriose, and panose (iMTP).
slightly from the published values. An-TGase and PulA showed the pH
optimum at pH 5.0 and BBA at pH 5.5. All three enzymes retained
more than 50% of their maximum activity at pH 5.0–6.0 (Fig. 2a). As
for their temperature optima, PulA, BBA, and An-TGase displayed the
maximum activity at 60°C, 50°C, and 55°C, respectively. All three
enzymes retained more than 50% of the maximum activity at
temperatures from 45°C to 65°C (Fig. 2b).

To further examine the possibility of requiring pH and temperature
control during IMO preparation, yields of iMTP were evaluated at
different initial pH values and temperatures. As shown in Fig. 2c and
Fig. 2d, saccharification and transglycosylation were only slightly
affected by pH between 4.5 and 6.0 and temperatures between 45°C
and 60°C. An optimal pH of 5.8 and optimal temperature of 55°C were
selected for subsequent experiments.

3.3. Dosage of An-TGase affects IMO formation efficiency

The effects of the amount of An-TGase on iMTP preparation were
examined, and the results are summarized in Fig. 3. The use of
An-TGase at dosages of 500, 1000, and 2000 U/g resulted in maximum
IMO yields of 46.47% at 13 h, 45.80% at 8 h, and 45.46% at 4 h,
respectively. These results show that high dosage of An-TGase can
significantly reduce the transglycosylation time. However, from the
economic point of view (An-TGase is one of the most expensive
enzymes used in IMO production), 500–1000 U/g dosage is more
suitable for industrial-scale preparation of IMOs.

3.4. Roles of PulA, BBA, and BAA in IMO preparation

Pullulanase is an enzyme that specifically hydrolyzesα-1,6-linkages
in starch molecules and is known as a debranching enzyme [32]. To
determine its effect on IMO preparation, different amounts of PulA
were added to the reaction mixture. Although the control showed a
maximum of 35% iMTP formation, addition of PulA significantly
increased iMTP synthesis, achieving a maximum value of 46% when
0.9 U/g of PulA was added (Table 1). However, treatment of IMO
products with the same amount of PulA under similar conditions
showed no significant effects on IMO quality, as analyzed by HPLC
(data not shown). From this, it can be said that PulA is beneficial for
IMO formation as it debranches liquefied starch, thus facilitating the
consequent saccharification, but hardly hydrolyzes α-1,6-linkages in
oligosaccharides.

β-Amylase specifically hydrolyzes α-1,4-linkages in starch
molecules to form maltose [35]. To clarify the effect of BBA on IMO
preparation, different amounts of BBA were added to the reaction
mixture. In the absence of BBA, only about 33% IMOs were formed.
The addition of 0.5°DP/g of BBA increased both the percentage of iMTP
and the specific value of iMTP (Table 1). These results indicate that
BBA enhances IMO formation by enhancing the yields of maltose and
maltotriose and thus promotes transglycosylation by An-TGase.
Furthermore, the activity of BBA, which catalyzes the hydrolysis of
maltodextrin to form MOSs, is necessary for IMO production as
re-confirmed in this study (Table 1). With the addition of a certain
amount of BBA (0.3–0.7°DP/g), iMTP values could be significantly
increased, and the maximum yield was obtained when ≥0.5°DP/g of
BBA was added.

Therefore, increasing the dosages of PulA and BBA and the degree of
starch liquefaction resulted in elevated levels of substrates for
transglycosylation, especially higher contents of maltose and
maltotriose. This leads to an improved IMO production efficiency
through transglycosylation by An-TGase, which rapidly transfers
glucosyl residues to MOSs, followed by gradual hydrolysis of both
α-(1 → 4) linkages and α-(1 → 6) linkages at the nonreducing end to
generate smaller molecules with mainly α-(1 → 6) linkages [33,34].
Given that BAA catalyzes the hydrolysis of maltodextrin to form MOSs,
it is expected that the use of BAA will generate more preferred
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Fig. 2.Optimal pH and temperature used for IMO preparation. (a) optimumpH profile of enzymes, (b) optimum temperature profile of enzymes. (c) optimumpH for saccharification and
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substrates for BBA, which in turn produces higher levels of suitable
substrates for An-TGase, thus accelerating the transglycosylation
process during IMO preparation. Therefore, the effects of BAA (10–
18 U/g) on IMO production were investigated with the use of 0.5°DP/g
of BBA. As expected, increasing the dosage of BAA greatly enhanced
the iMTP yield and especially the specific value of iMTP and shortened
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the transglycosylation process (Table 1). The use of 16 U/g of BAA
resulted in improved iMTP yield, with a 22% increase in the specific
value of iMTP (from 3.01 to 3.68) (Table 1). These results also suggest
a novel application of BAA in the preparation of long-chain or
middle-chain isomalto/malto-polysaccharides, a novel soluble dietary
fiber prepared through the enzymatic conversion of starch [37,38].
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ase dosage on IMO formation.



Table 1
Effects of pullulanase, BBA, and BAA on IMO formation during saccharification and
transglycosylation stages.

Dosage of enzyme Maximum value of iMTP
(%, w/w)

Specific value of iMTP
(%, g/g·h-1)

PulA (U/g)
0 35.01 ± 1.33 2.33 ± 0.09
0.3 40.42 ± 1.23 2.70 ± 0.08
0.6 43.85 ± 1.42 2.92 ± 0.09
0.9 45.38 ± 1.33 3.03 ± 0.09
1.8 45.51 ± 1.23 3.03 ± 0.08

BBA (°DP/g)
0 33.18 ± 1.33 2.21 ± 0.05
0.3 43.45 ± 1.23 2.90 ± 0.07
0.4 45.04 ± 1.42 2.92 ± 0.08
0.5 46.29 ± 1.33 3.01 ± 0.06
0.6 46.02 ± 1.23 3.07 ± 0.09
0.7 45.74 ± 1.13 3.05 ± 0.06

BAA (U/g)
10 46.55 ± 1.25 3.58 ± 0.09
12 46.80 ± 1.36 3.60 ± 0.08
14 47.07 ± 1.29 3.62 ± 0.07
16 47.79 ± 1.20 3.68 ± 0.08
18 47.32 ± 1.09 3.64 ± 0.09
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3.5. Improved processes for IMO production

The above results show that several microbial amylases are capable of
catalyzing maltodextrin hydrolysis to form MOSs during enhanced IMO
formation, and this prompted us to develop an enzyme cocktail-based
process for IMO preparation. The reaction mixture in a 10-L reactor
contained 25% (w/v) liquefied starch with a DE value of 25 and an
enzyme cocktail. In the proposed process (Table 2) for IMO production
using an enzyme cocktail of BAA, BBA, PulA, and An-TGase, 49.09% iMTP
was obtained in 13 h, a significant improvement over the currently used
process for commercial production with 39–41% iMTP yields (personal
communication). Interestingly, the process proposed here can be easily
modified to accommodate a Do-It-Yourself (DIY) style by increasing the
dosage of An-TGase (Table 2), which would enable people to prepare
their own IMOs using an enzyme cocktail of BAA, BBA, PulA, and
An-TGase (2000 U/g). This rapid preparation of IMOs was completed in
4 h, making it suitable for the production of IMOs at home.

In the traditional method for the production of IMOs, α-amylase
is added to starch slurry (30%), followed by maltogenase such as
β-amylase for saccharification and then transglucosidase for
transglycosylation. The resulting IMOs are finally purified with yeast
fermentation and chromatography [39]. The entire process requires
approximately 120 h to yield a mixture with 58% IMOs [39]. However,
in the currently used process for the commercial-scale production of
IMOs, a thermostable α-amylase is added to starch slurry, followed by
a jet liquefaction process at 107–109°C. After cooling to 55°C, fungal
α-amylase is used for saccharification for 4 h and subsequently
transglucosidase is added to perform transglycosylation for another
40–60 h. The resulting IMOs are finally physically or biotechnologically
purified to prepare IMOs of different grades. A lengthy process
and low yields are the main disadvantages of this process, which takes
45–65 h to produce 39–41% IMOs (unpublished data from a Chinese
IMO manufacturer, personal communication). The new process
developed in this study uses PulA, BAA, BBA, and An-TGase to perform
Table 2
IMO production using different processes.

Enzyme cocktails Maximum value of iMTP
(%, w/w)

Specific value of iMTP
(%, g/g·h-1)

Pr

BAA/BBA/PulA/An-TGase 49.09 ± 1.56 3.78 ± 0.12 16
BAA/BBA/PulA/An-TGase (DIY) 45.52 ± 0.91 11.38 ± 0.23 16
simultaneous saccharification and transglycosylation to process the
liquefied starch. After 13 h of reaction time, 49.09% IMOs (calculated
from the total amount of isomaltose, isomaltotriose, and panose) were
produced. A rapid process for IMO preparation was also tested for a
DIY purpose, with a yield of 45.5% IMOs in 4 h (Table 2).

An alternative method has been developed in which Geobacillus
stearothermophilus maltogenic amylase and T. maritima
α-glucanotransferase were simultaneously used to process the
liquefied starch solution. After 14 h of reaction, a yield of 68% IMOs
was obtained [20]. This relatively lower yield is possibly due to the
formation of DP4- or larger IMOs, which are not calculated as the
contents of IMOs.

4. Conclusion

In the present study, a novel process for high-efficiency production of
IMOs was developed based on the combined functions of commercially
available B. naganoensis pullulanase, B. amyloliquefaciens α-amylase,
barley bran β- amylase, and A. niger α-transglucosidase. Pullulanase
is a crucial factor to accelerate saccharification and MOSs formation
and significantly shortened the duration of transglycosylation.
Saccharification and transglycosylation can be done simultaneously
with acceptable IMO productivity, thus providing a new possibility to
simplify and improve the IMO production from starch with an enzyme
cocktail.
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