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Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be
used as fuel with significant characteristics like high octane number, low cetane number and high heat of
vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility
with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw
materials. The supply of feedstocks for bioethanol production can vary season to season and depends on
geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and
municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though
the commercial production has still not been established. In addition, the supply and the attentive use of
microbes render the bioethanol production process highly peculiar. Many conversion technologies and
techniques for biomass-based ethanol production are under development and expected to be demonstrated. In
this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried
out and a review of current trends and issues is conducted.
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1. Introduction

Nowadays, the depletion of fossil fuels and the environmental
compliance regarding the greenhouse gases has attracted the interest
in non-conventional fuel from bioresources [1,2,3,4,5]. For the past
few years, the biomass-based ethanol has caught the attention of
global industry. According to the Renewable Fuels Association [6],
United States (U.S.) and Brazil are the pioneer countries in global
bioethanol production with a percentage of approximately 90%. The
involvement of several countries has already begun in new pathway
development for biogasoline from biomass [7]. Wheals et al. [8] refer
that in North America, bioethanol is primarily provided from starch
sources (corn starch) while in South America is mostly extracted from
sugars (sugarcane juice) and molasses [8,9].

On the other side, the European countries focus on biodiesel and
biogasoline production which exceeds 50% of the global production
cause of engines development and feedstocks supply costs [10,11,12,
13,14]. Despite the fact that most of the countries in the world, China,
India and Japan continue to invest in technologies from agricultural
residues and appear as future producers [15,16,17,18,19]. Although
bioethanol based on corn and sugar is an encouraging replacement to
gasoline in transportation sector, the amount produced is insufficient
with respect to the annual consuming amount worldwide. There is no
black-and-white answer to the question of what constitutes the most
suitable feedstock for the bio-based economy. Generally, sugars, oils
and proteins can be used in many applications. The concern for the
food security has globally increased the interest of researchers to focus
on alternative feedstocks [20,21,22].

The nova Institute of Germany claims that lignocellulosic resources
are favorable in terms of environmental sustainability and food
security as they do not antagonize food crops and animal feed as
renewable substrate for bioethanol production [23,24]. Moreover, the
availability of lignocellulosic materials in industrial-scale basis is
increased cause of the exploitation of industrial wastes and agricultural
residues [25,26,27]. Lignocellulosic wastes are a promising feedstock
considering its availability and low cost. The utilization of corn stover,
rice, wheat and sugarcane bagasse is gaining significant importance
worldwide [28,29,30,31].

Nonetheless, the recalcitrant structure of lignocellulose requires
high capital cost processing. Therefore, these technologies are not
economically achievable [32,33]. During the decomposition of
lignocellulosic material, it must be considered that D-xylose is the
second important sugar which has to be broken down as is found in
high portion in the feedstock [34]. The conversion of biomass to
ethanol has 4 main steps: pretreatment, hydrolysis, fermentation and
distillation. During the last decades genetic engineering and enzymatic
processing have provided significant improvements in all of the four
Table 1
Top five bioethanol producers (billion gallons) [45]

Country 2008 2010 2012 2014

US 9.31 13.30 13.22 14.34
Brazil 6.47 5.57 5.57 6.19
Europe 0.73 1.21 1.14 1.45
China 0.50 0.54 0.56 0.64
Canada 0.24 0.36 0.45 0.51
steps of ethanol production and making capable to ferment different
sugars concurrently [35,36,37]. Even though there is a wide range of
bacteria, they cannot all be adapted to saccharification process
conditions and several bacteria produce low ethanol yields. For this
reason, subtle improvements are sometimes required [38].

The microbial contamination is a crucial problem in bioethanol
production process. Bacterial infections occur during bioethanol
fermentation which consume nutrients necessary for the fermentation
itself and it is possible to produce toxic products too. Both of these
situations can negatively affect the bioethanol yield [39,40]. The
formation of inhibitory by-products during the biofuel production must
be taken into account. Pienkos and Zhang [41] refer that pretreatment
and conditioning processes release toxic compounds into the
hydrolysate which inhibit the bacteria growth and decrease the ethanol
yield. The mechanism/methodology applied for biomass pretreatment
influences the relevant toxicity rate [41,42]. This review examines
recent technologies and trends that are used in lignocellulosic
bioethanol production. It also provides a summary of the current
problems and barriers concerning the different pathways and analyses
potential issues and trends of biotechnological conversion performance.

2. Current status

In 2014, the global production of bioethanol reached 24.5 billion gal,
up from 23.4 billion gal in 2013 which shows the international
bioethanol market is at a very dynamic stage [43]. More than half
(about 60%) of global bioethanol production is based on sugar cane
conversion and the rest (40%) comes from other crops [44]. United
States and Brazil are the global producers as they produce more than
70% of the global bioethanol production (Table 1).

Even the main source for bioethanol production is considered to be
the corn from US and sugar cane from Brazil, any country with
agro-industrial economy can be involved in bioethanol fermentation.
This is feasible cause of the current progress in bioconversion of
non-food crops in large scale production [46] (Fig.1).

In Europe the biochemical pathways show a crucial potential
for research development in conjunction with the progress in
biorefineries. It is important to clarify that several technologies are
under development such as the SSCF technology which gains space in
biotechnology research area. Research requires effort to solve problems
concerning process improvement and confront challenges regarding
the overall efficiency of a biorefinery [47]. It was also reported in 2009
that notwithstanding the global economic-constraints, bioethanol
production continues to increase and to support significantly to the
global development [48].

3. Lignocellulosic sources and composition

3.1. Raw materials and characteristics

Sustainable biofuel production in Europe can be met with
lignocellulosic biomass usage [49]. There is a wide variety of raw
materials that are discerned by their makeup, structure and
process-ability. InNorthAmericamost cultivated land comprises (Table 2).

The land cultivation is mainly based on forestland (around 35%),
grazed land (27%) as well as crop lands (19%) which constitute
approximately 9.0 million km2 [51,52,53]. Forest sources include



Table 2
Total energy potential from different feedstocks (KTOE). [50].

Different biomass sources availability 2004–2010 2020

Netherlands EU-27 Netherlands EU-27

Biomass from agricultural land and by-products Woody residues of fruit trees, nuts and berry plantations, olives,
citrus and vineyards

16 9362 13 10105

Straw 39 22936 195 49285
Manure 3916 56817 4574 46724
Grassland cutting 38 1097 40 1143

Biomass from forestry Primary forestry residues 22 20285 71.5 41186
Round wood 148.4 56735 137.8 56115
Sawmill by-products (excluding saw-dust) 21 9072 31 10093
Saw-dust 10 4496 – 4984
Other industrial wood residue – 4637 – 5461
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woody biomass consisting mainly of residues or by-products from
manufacturing processes, biomass plantations, agricultural residues
(trees and branches) [54,55]. Cellulose materials can also be collected
from municipal and industrial wastes which include food residues and
pulping sludge [56,57].

3.1.1. Forest woody sources
According the taxonomical division of woody materials, there are

two species: softwoods and hardwoods. Softwoods are gymnosperms
and originate from coniferous trees including pines, spruces and firs.
Hardwoods are angiosperms and originate from deciduous trees
including oaks, maples and birches [59].

Fig. 2 shows the type of forest biomass that can be supplied globally.
Forest biomass represents a valuable feedstock cause of its composition
(more lignin and less ash content than agricultural residues). Forestry
wastes like wood chips, branches, and sawdusts have also been used
as bioethanol feedstocks [60].

3.1.2. Agricultural and municipal solid wastes (MSW)
Agricultural residues are a widespread lignocellulosic biomass source

available in many countries. The available amount of agro-residues is
estimated to be 1010 Mt. globally, which corresponds to an energy value
of 47 EJ [61]. Crops residues consist of an extensive variety of types. They
are mostly comprised of agricultural wastes such as corn stover, corn
stalks, rice and wheat straws as well as sugarcane bagasse [62]. Crop
residues contain more hemicellulosic material than woody biomass
(approximately 25–35%) [63]. Besides from environmental point of view,
agricultural residues help to avoid non-sustainable cutting trees
decreasing the phenomenon of deforestation [30].
Table 3
Pros-and-cons of potential microorganisms for bioethanol fermantation [140].

Species Pros

Saccharomyces cerevisiae –Alcohol yield up to 90%
–High tolerance to chemical inhibitors and to eth
–Naturally adapted to ethanol
fermentation
–Complaisance to genetic modifications

Z. mobilis –Bioethanol yield up to 97%
–High ethanol tolerance (up to 14% v/v)
–Does not require additional oxygen
–Complaisance to genetic modification

Escherichia coli –Ability to use both pentose and hexose sugars
–Amenability for genetic modifications

Thermophilic species:

➢ Thermoanaerobacter
➢ Clostridium

–Resistance to high temperature of 70°C.
–Suitable for consolidated bioprocessing
–Ferment a variety of sugars
–Amenability to genetic modification
Moreover, municipal and industrial solid wastes are also a
prospective pathway for biofuels production [64]. Li [65] studied that
integrated bioconversion of cellulose-enriched municipal solid waste
offers promising alternatives but the processing cost is still high.
However, their utilization associated with the disposal of garbage,
organic waste and household by-products has to be considered in case
of environmental effects [66]. Even though intensifying crop
management is applied to improve yields, the high cost of biomass
still remains a crucial constraint [67]. According to this study the
available amount of biomass for 30% petroleum-based gasoline
displacement will almost meet the target of 2030 [68].

3.1.3. Marine algae
Since the 1970s special interest has existed in marine algae as third

generation biofuel feedstock but the research was discontinued when
funding stopped. Particularly the research has focused on examination
of its production efficiency per acre including water consumption and
estimation of by-products during ethanol production [62]. Even
though exists progress in algae development commercial applications
are still limited during the 20th century. Currently, algae conversion is
regaining interest as future biofuel feedstock in order to replace
energy crops and cover any limitations in supply.

Marine algae are a suitable raw material for several chemical
processes especially due to biorefineries expansion that aims at the
production of different substances such as biofuels (i.e. bioethanol,
biodiesel, biogasoline etc.) and other value-added chemicals [69].
Rodolfi et al. [70] state that algae feedstock can provide 60 times more
alcohol than soybeans per acre of land. According to the study of
Ferrel and Sarisky-Reed [71] algae can provide ten-fold the amount of
ethanol than corn per growing area. Harel [72] refers that algae are
Cons

anol (10% v/v)
–Not able to ferment xylose and arabinose sugars
–Not able to survive at high temperature of hydrolysis

–Not able to ferment xylose sugars
–Low tolerance to inhibitors

–Low tolerance to inhibitors and ethanol
–Narrow pH and temperature growth range
–Production of organic acids
–Low tolerance to ethanol



Fig. 1. Stages of bioethanol fuel production.
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consuming high amounts of CO2 during their growth whichmake them
very attractive to use as an environmental friendly feedstock.

3.2. Lignocellulosic molecular components

The main components of lignocellulosic biomass are cellulose
(30–35%), hemicellulose (25–30%) and lignin (10–20%) In addition,
lignocellulose contains protein, lipids, water and other items
[73,74,75,76]. Cellulosic and hemicellulosic polymers constitute
approximately 70% of the entire biomass and are connected to the
lignin component through a variety of covalent bonds that give the
lignocellulosic biomass significant robustness and resistance to
(bio-)chemical or physical treatment [77,78].

3.2.1. Hemicellulose
Hemicellulose has a vague and changeable structure of

heteropolymers including hexoses (glucose, galactose, mannose),
pentoses (xylose, arabinose) as well as sugar/uronic acids (glucuronic,
galacturonic, methylgalacturonic) [79]. The hemicellulosic chain
consists of xylose (90%) and arabinose (10%). Xylan is the primary
component of hemicellulose and its composition varies in each
feedstock. For this reason, hemicellulose stands in need of wide variety
of enzymes to be completely hydrolyzed into free monomers [80,81,82].
Fig. 2. Different types of forest biomas
3.2.2. Cellulose
Cellulose is a linear polymer which contains several thousand of

1,4-b-glucosidic bonds connecting thousands of glucose units. The
structure is crystallic because of the hydrogen bridges between the
polymers. This large amount of hydrogen linkages provides toughness
and compactness to the cellulose molecule. Deguchi et al. [83] refer
that for the conversion of cellulosic crystalline to an amorphous
structure, a temperature of 320°C and a pressure of 25 MPa is
required. Cellulose is the rifest organic polymer on earth and make up
30% of plant biomass. However, cotton consists of almost 100%
cellulose [84].

3.2.3. Lignin
Lignin is a complex polymer coupled via covalent bonds to xylans

rendering massiveness and stability to the plant cell wall. It contains
three main monomers, coumaryl alcohol, coniferyl alcohol, and
sinapyl alcohol [75]. Lignin is a copious natural polymer and a
dominant constituent of wood (30–60% for softwoods and 30–55% for
hardwoods), while agricultural residues and grasses contain 3–15% and
10–30% respectively [63]. Contrarily, crop residues like corn stover, rice
and wheat straws contain particularly hemicellulose. Heretofore, lignin
effects on hydrolysis have partially been investigated, even though in
recent studies it is reported that lignin characteristics, such as structure
and composition, can positively contribute to the whole hydrolysis
s. Adopted from the source [58].



Fig. 3. Schematic of a biochemical cellulosic ethanol production process. Adopted from the source [95].
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process [85]. Chen et al. [86] pointed out that lignin modification via
genetic engineering techniques could increase the bioethanol yield and
furthermore to be a potential source to give biorefineries financial
solvency [86].
4. Processing routes to bioethanol

There are two different approaches (i.e. biochemical and
thermochemical conversion) for bioethanol production from biomass
[87]. Both pathways conclude into fragments of lignin, hemicellulose
and cellulose via degradation of lignocellulose. Polysaccharides are
hydrolyzed into sugars and subsequently are converted into
bioethanol [88,89]. However, these conversion technologies are not
similar techniques. Mu et al. [90] state that the thermochemical route
includes feedstock gasification at 800°C with a catalytic reaction to
ensue. This technology requires high level of heat and results into a
synthesis gas (syngas) such as CO, H2 and CO2. Syngas can be
chemically converted into a mixture of alcohols at 300°C using MoS2
as the catalyst. Ethanol is separated from the mixture via distillation
[91]. Alternatively, syngas can also be further processed into ethanol
using the microorganism Clostridium ljungdahlii, Saccharomyces
cerevisiae or Zymomonas mobilis [92,93,94].

In contrast to the thermochemical pathway towards syngas, the
biochemical route includes mild physical and/or thermochemical
pre-treatment, and biological pretreatment using hydrolytic enzymes
to degrade cellulose and hemicellulose. The physical and/or
thermochemical pretreatment is mainly used to overwhelm
contumacious substances and boost cellulose availability/accessibility
Fig. 4.Mechanism of acid-catalyzed cellulose hydrolysis to glucose. HMF =
to cellulases and hemicellulases in the biological pretreatment to
produce the monomeric sugars. [96,98] (Fig. 3).

The upstream process includes hydrolysis of cellulose and breakdown
of hemicellulose into soluble sugars. Afterwards the sugars are converted
into bioethanol via fermentation and pure ethanol is produced via
distillation [88,97]. Contemporaneously, the recalcitrant by-product,
lignin, can be combusted and converted into power and heat [89].
In general, biochemical conversion consists of four unit operations
i.e. pretreatment, hydrolysis, fermentation and distillation [99,100].
Nowadays, the biochemical approach is the most commonly used
process [101].

4.1. Pretreatment

Hydrolysis and downstreamprocessing can be optimized by effective
pretreatment. The basic treatment methods include physical and
thermochemical processes which disrupt the recalcitrant materials and
enable the cellulose to undergo hydrolysis with higher efficiency and
lower energy consumption [102]. The pretreatment process required
for each feedstock was chosen according to its characteristics. Zhu and
Pan [103] reported that agricultural biomass treatment differs from
woody biomass because of its physical properties and chemical
composition. Unlike agricultural biomass, woody biomass requires high
content of energy to reach size reduction for further enzymatic
saccharification.

Toxic compounds have also to be considered for evaluating the
pretreatment cost. Different substances may act as inhibitors of
microorganisms that are used in the ethanol fermentation. These
inhibitors include phenolic compounds, furans (furfurals and 5-HMF),
hydroxymethylfurfural, LA = levulinic acid, FA = formic acid [113,114]



Fig. 5. Mechanism of the enzyme catalyzed hydrolysis of cellulose into glucose [116]
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aliphatic acids and inorganics compounds (iron, chromium or nickel).
Several alternative measures can be taken to avoid problems caused
by inhibitors [104]. The detoxification process is an important step
which can affect the pretreatment performance [103,105,106]. General
feedstock versatility and toxic inhibitors produced have to be
considered on the pretreatment efficiency in order to reach optimal
conditions [107].

4.2. Hydrolysis

The performance of the hydrolysis is highly associated to the
pretreatment process [80]. During this reaction, cellulose and
hemicellulose are hydrolysed into simplistic and soluble compounds
available for further conversion (fermentation) to ethanol [88]. There
are two different types of hydrolysis processes that involve either
acidic (sulfuric acid) or enzymatic reactions. The acidic reaction can be
divided into dilute or concentrated acid hydrolysis. Dilute hydrolysis
requires a high temperature of 200–240°C to disrupt cellulose crystals
[108]. On the other side, concentrated acid hydrolysis is a more
effective method as it produces higher amount of free sugars (80%)
and lower concentrations of inhibitors. However, this process requires
high quantity of acid which makes it usage less attractive [109,110].

When acids are used in the hydrolysis, the phenomenon of chemical
dehydration occurs on monosaccharides resulting in the appearance of
other compounds like aldehydes [20]. This specific issue has driven the
researcher to focus on enzymatic hydrolysis. Compelling pretreatment
is fundamental to an efficient enzymatic hydrolysis [111]. Eggeman
and Elander [112] have demonstrated that Trichoderma reesei is a
very efficient fungus to produce industrial grade cellulolytic enzymes.
Recent studies proved that lignin is a source of sustainable energy
and added-value compounds. The application of metal components
like Ca(II) and Mg(II) could intensify the enzymatic hydrolysis
[112,115] (Figs. 4 and 5).

Sewalt et al. [117] have reported that the unfavorable influence of
lignin on cellulases activities can be surpassed by ammonium and
N-based components. Spindler et al. [118] report that the enzymatic
pretreatment can be attained in simultaneous way with the
co-fermentation (known as simultaneous saccharification and
fermentation (SSF)) process in order to produce ethanol from woody
biomass. In SSF process the concentration of saccharides is kept low
and cellulose inhibition is deterred. In a separate hydrolysis and
fermentation (SHF) process cellulases (hydrolytic enzymes) are
inhibited by glucose and cellobiose (saccharide products) resulting in
a slower process and a lower yield of fermentable sugars [119].

4.3. Fermentation

Fermentation is the following step and requires the presence of
microorganisms to degrade sugars into alcohols and other end
products. The previously described processes are fundamental for the
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fermentation process [88,89]. Typically S. cerevisiae converts the sugars
into ethanol under anaerobic conditions at a temperature of 30°C. In this
pathway other by-products are also generated in the form of CO2 and
N-based compounds. S. cerevisiae is a prevalent microorganism and
provides a high yield of ethanol (12.0–17.0% w/v; 90% of the
theoretical yield) from sugars [119,120].

The SHF is the traditional method for bioethanol production. Several
studies have reported the weakness of S. cerevisiae to ferment only
hexose sugars and the interest for versatile-acting microorganisms
increased [121]. To date, extensive research has been conducted to
develop microorganisms which enable to i) ferment pentose and
hexose sugars synchronously available from the hemicellulose fraction
and ii) endure under inhibitory conditions. Recently, research
attention focuses on efficient techniques like SSF in order to establish
a consolidated bioprocessing so that hydrolysis and fermentation
occur in a single reactor. This leads to a reduction in costs and
avoidance of high amount of inhibitory compounds. While there is a
wide variety of microorganisms which are able to convert sugars to
ethanol as well as the use of one microorganism seems promising for
efficient fermentation, their limitation from the standpoint of ethanol
yield, tolerance to chemical inhibitors and temperature is still obvious
in many demonstrated projects [85] (Table 3).

The end-product from fermentation process is a mixture of
ethanol–water and requires further separation through a distillation
process. Fractional distillation is a very common process to separate
ethanol from water based on their different volatilities. The distillation
column is heated and on the top of the column the distillate
(bioethanol) is collected as it has lower boiling point (78.3°C) whereas
water's boiling point is (100°C). However, the concentration of the
ethanol distillate is about 92% and further dehydration is required to
obtain 99% ethanol [25].

5. Recent issues in bioethanol production

5.1. Is recalcitrance of biomass a barrier?

Although lignocellulosic biomass is a promising feedstock for
biorefineries, its recalcitrant structure and complexity make up an
economic and technical constraint to lignocellulosic-based biofuel
production. The three constituents of biomass (cellulose, hemicellulose
and lignin) enhance its compactness and strength. There are strong
linkages between molecules resulting in a complex structure of
lignocellulosic material. As a consequence, it is necessary to use specific
enzymes as a pre-treatment for fermentation [122].

Moreover, there are other materials which are inhibitory, such as
xylose, and must be removed in order to prevent any negative
influence to enzymatic hydrolysis [123,124]. Recent studies have
indicated that bioconversion efficiency is related to the pretreatment
performance [103]. For instance, the recent SPORL treatment
technology is of great interest for its broad on acting in different types
of woody materials [126,127]. Zhu et al. [128] reported that SPORL
technology is effective for softwoods (e.g., spruce and red pine) and
capable to solve problems concerning their poor digestibility in
enzymatic saccharification. The SPORL was effective even when it was
applied to directly pretreat wood chips without chip impregnation.
Generally, each feedstock has different characteristics and for this
reason the pretreatment process has to be chosen carefully [125].

The recalcitrance issue still remains a technical constraint that has to
be eliminated. This problem is not current but is concerned to the
evolution mechanism of natural plants which have developed those
mechanisms to resist and avoid the attack of insects on theirs sugars.
In general this ‘natural’ recalcitrance of plants makes up an
impediment for the transformation of lignocellulosic biomass into
fermentable sugars. For this reason, research development has been
focused on sugars capture by re-engineering (genetic techniques
applied in cell wall structure) in order to increase the sugar yields
following by enzymatic hydrolysis. The use of such approaches may
promote and accelerate the future use of lignocellulosic feedstocks for
the bioethanol industry [129].

5.2. Sustainable balance of water-biofuels

Water consumption in sustainable biorefineries is a crucial issue
considering the industrial and agricultural practices implemented to
date [130]. Although water resources are not constraint for countries
such United States, Canada and Brazil, for other countries like China
and India water availability is a crucial issue which project
investments have to be encountered [131,132]. In United States, the
production of energy feedstocks and fuels requires substantial water
input. So far, bioethanol from lignocellulosic resources is produced in
laboratory and pilot scale.

The Argonne National Laboratory refers that thewater requirements
for lignocellulosic ethanol production varywith technology and invokes
that nearly 35 l of water required to produce biochemically 3.5 l of
cellulosic ethanol [133,134]. The U.S. National Academy of Science
(NAS) has reported that the overuse of water via the expansion of
energy crops makes up serious problem. Even the biorefineries
consume a specific amount of water, the main problem is concerned
with the water used for cultivation [135,136]. Huffaker [137] states
that significant steps are required and must include best available
techniques (BATs) (for instance recycling) for sustainable use of water.

5.3. Gap between biotech research and commercialization

Bioethanol production from lignocellulosic biomass at large scale has
not yet been demonstrated as an economically feasible option. Research
efforts have to focus on second generation (cellulose-based) bioethanol
because it has potential to be improved. A wide variety of technical
problems occur in the different steps of bioethanol processing from
pretreatment to the final separation of the ethanol–water mixture.
Further development has to be carried out in order to mature and
consequently to industrialize the second-generation-based production
technologies. However, the comprehension of the interconnection
between science and applied technology is crucial to identify the voids
and rifts of research-industry system, so that through an overall
analysis the socio-economical, technical and environmental aspects can
be determined [138].

However, in order to reduce the cost of bioethanol production, it is
necessary to clarify the important technological steps (i.e. enzyme
development: activity, stability and production costs). Many companies
are developing enzymes to increase the range of applications and the
performance of the enzymatic hydrolysis of cellulose and hemicellulose.
The hydrolysis n may involve the application of micro-organisms (fungi,
yeast, bacteria) and/or enzymes. The choice of micro-organisms and/or
catalysts has to be made in terms of type and quantity as this has an
impact on conversion rates and process stability. However, the use of
enzymes and microorganisms increases the production cost of
lignocellulosic ethanol. Further research has to be conducted in the area
of microorganisms and enzymes to increase the conversion efficiencies,
decrease the cost of microorganisms and enzymes to positively
contribute to profitable lignocellulosic-based ethanol production plants
[139].

5.4. Bioethanol-based economy

Bioethanol economy is based on different factors like feedstock
availability, bioprocessing technology efficiency, and end-products
characteristics. There is a wide variety of sources (corn starch, sugar
cane lignocellulosic biomass, etc.) with low cost and high availability
which can be used for bioethanol. Research & Development
communities have to focus on the development of cheap and efficient
bioconversion technology of solid cellulosic materials into bioethanol
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as a feasible industrialized technology in order to be considered
economically attractive.

Furthermore, significant initiatives like the registration of cellulosic
bioethanol for sale and use under the RFS eliminate the gap between
research and commercialization. Blenders and refiners of
transportation fuels are obligated under the RFS to include certain
percentages of renewable fuels in their total fuel sales. Industry
ensures that since cellulosic bioethanol technology is ready for
commercialization. The production of bioethanol could reach the
required levels to be economically viable from the demand caused by
the RFS. Both lawmakers and industry expect that the creation of a
guaranteed market as federal programs such as grants, loans, and tax
incentives boost the market introduction of this fuel [140,141].

However, the lignocellulosic-base ethanol is not yet widely
demonstrated because of its high costs [142]. In addition, efforts have
to be continued and studies to be carried out to optimize the
efficiency of the existing process technology from the pretreatment to
the dehydration [143]. There are margins for further development and
combination (i.e. consolidated bioprocessing) of these pilot
technologies in order to achieve higher bioethanol yields. Especially
processes based on enzyme technology have high cost and for this
reason have to be improved [144]. Bioethanol production plays a key
role on bio-based economy as there are strategic perspectives for
global producers, mainly US and Europe, especially when the price of
oil is reduced.

6. Conclusion

In the next decades, biomass will be the most meaningful renewable
energy source as an alternative to fossil fuels. Lignocellulosic bioethanol
is a potential pathway for the global producerswhich provide renewable
fuels. Bioethanol productionwill be probably themost successful biofuel
because it has plenty of usable forms (heat, power, electricity or vehicle
fuel). Different feedstocks can be used in bioethanol production and
studies have focused on their characteristics. The benefits anticipated
from mandated use of cellulosic biofuels include energy security
through domestic production of transportation fuel and environmental
improvement through the reduction of greenhouse gas and other
particulate emissions associated with fossil fuel combustion. Additional
benefits include creating new markets for agricultural products,
keeping productive farmland in use, and improving trade balances.

The main steps leading to the end-user product (bioethanol) are
pretreatment, hydrolysis, fermentation and separation/distillation. High
attention has to be given for all four major steps so that the
bioconversion will be optimized and the ethanol yield increased. In the
USA and Europe, previous and planned research initiatives and efforts
are still funded by federal sources. Also significant research funding
exists through various companies which are making investments in
applied research that addresses topics concerning the genetics of
energy crops, the production of stable and active hydrolytic enzymes,
the further development of yeast and bacterial ethanol fermentation
systems. Even though technological advances and research efforts are
still progressing, multiple configurations of systems and techniques are
developed in order to design efficient, sustainable and economically
feasible bioethanol production technologies and confront issues
concerning the feedstocks and operations costs.
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