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Background: Avian influenza viruses (AIVs) are influenza A viruses which are isolated from domestic and wild
birds. AIVs that include highly pathogenic avian influenza viruses (HPAIVs) are a major concern to the poultry
industry because they cause outbreaks in poultry with extraordinarily high lethality. In addition, AIVs threaten
human health by occasional zoonotic infection of humans from birds. Tools to visualize AIV-infected cells
would facilitate the development of diagnostic tests and preventative methods to reduce the spread of AIVs. In
this study, a self-assembling split-green fluorescent protein (split-GFP) system, combined with influenza virus
reverse genetics was used to construct a visualization method for influenza virus-infected cells.
Results: The viral nucleoprotein (NP) segment of AIV was genetically modified to co-express GFP11 of
self-assembling split-GFP, and the recombinant AIV with the modified NP segment was generated by
plasmid-based reverse genetics. Infection with the recombinant AIV in cultured chicken cells was visualized by
transient transfection with a GFP1-10 expression vector and fluorescence was observed in the cells at 96 hours
post-inoculation. Virus titer of the recombinant AIV in embryonated eggs was comparable to wild type AIV
titers at 48 h post inoculation. The inserted sequence encoding GFP11 was stable for up to ten passages in
embryonated eggs.
Conclusions: A visualization system for AIV-infected cells using split-GFP was developed. This method could be
used to understand AIV infection dynamics in cells.

© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Highly pathogenic avian influenza virus (HPAIV) affects the poultry
industry by causing large-scale disease outbreaks in many parts of the
world [1]. In addition, HPAIVs and low pathogenic avian influenza
viruses (LPAIVs) have occasionally impacted human health as
zoonotic infectious agents [2,3,4]. Establishing tools to dissect the
dynamics of avian influenza virus (AIV) in infected host cells is
essential to understand the host-pathogen interaction and to develop
preventative measures for both livestock and public health.

Fluorescent-protein-based technology is broadly used to visualize the
localization and dynamics ofmolecules, organs and cells, and is useful for
understanding and describing biological events such as intracellular
signaling, cell cycles and infection with pathogens [5,6,7,8,9,10].
Intracellular localization, viral protein functions and virus-infected
cells have been visualized using methods that combine an
influenza virus reverse genetics system [11] and green fluorescent
idad Católica de Valparaíso.
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gene (GFP) based technologies. Perez et al. [12]. described the
design and construction of an artificial viral RNA (vRNA) which
encoded a GFP reporter fused to non-structural protein 1 (NS1-GFP) and
a nuclear export protein and rescued recombinant NS1-GFP influenza
virus [12]. The recombinant NS1-GFP influenza virus had the genetic
backbone of mouse-adapted A/Puerto Rico/8/34 (H1N1) for analysis of
infection dynamics in mice [8]. Fukuyama et al. [9] have improved the
fluorescent influenza virus system to stably express four different
fluorescent proteins by serial passage in mice [9]. They used a
fluorescent HPAIV based on A/Vietnam/1203/2004(H5N1) combined
with a PR8 derived NS gene to express mouse-adapted NS1-Venus
to construct a bright version of modified GFP [9]. Although the
pathogenicity of the fluorescent HPAIV constructed with mouse-adapted
NS1-Venus in B6 mice was comparable to that of the original
A/Vietnam/1203/2004(H5N1) [9], a fluorescent AIV for avian cells is not
yet reported. In this study, we constructed a fluorescent visualization
system based on a LPAIV, A/chicken/Yokohama/aq55/2001(H9N2;
CY55), which used a self-assembling split-green fluorescent protein
(split-GFP) mechanism [13] for visualizing infected chicken cells. The
artificial NS genetic segment (GFP11-2A-NP) vRNA was designed as
follows. To shorten the inserted sequence, a 16 amino acid (AA) GFP11
sevier B.V. All rights reserved.
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(theGFP11M3 in previous study [13] is abbreviated toGFP11 in this study)
was employed. Co-expression of the GFP11 marker peptide and native
nucleoprotein (NP) was achieved by placement of the 2A ‘cleavage’
(to be more precise, ‘ribosome skipping’) peptide, a 20 AA sequence
(QLLNFDLLKLAGDVESNPGP) derived from foot-and-mouth disease virus
[14] between the sequences. Complementation of 3′ packaging signal,
3′ non-coding region and 60 bp derived from the 3′ end of the coding
region with three mutations in the NP segment of CY55 were as
previously described [10].

2. Materials and methods

2.1. Construction of recombinant virus and GFP1-10 expression vector

The GFP11-2A-NP vRNA/cDNA supplying vector was constructed as
indicated in Fig. 1a with a tandemly arrayed coding sequence of the
3′ artificial packaging signal (Fig. 1b), Kozak sequence, GFP11, 2A
peptide, full NP and 5′ untranslated region of CY55 (negative sense
orientation). Since 2A peptide was used for expression of multiple
poly-peptides by ‘ribosome skipping’ from a cDNA [14], design of
GFP11-2A-NP vRNA was intended to express two polypeptides; shorter
one contains GFP11, and another contains NP protein. GFP11-2A-NP
cDNA was artificially synthesized and cloned into pHW2000 [11]
by Takara Bio Inc. (Shiga, Japan). Mixed cultures of 293 T and MDCK
cells were co-transfected with GFP11-2A-NP and PB2, PB1, PA, HA,
NA, M and NS segments of CY55 cloned into pHW2000 as described
previously [15]. Transfected cell supernatants were harvested after
72 h and inoculated into the allantoic cavity of 10-d old embryonated
chicken eggs twice and incubated at 37°C for 48 h for amplification
of the recombinant virus. Allantoic fluid was harvested and stock
cultures of the recombinant AIV (rCY55/GFP11-2A-NP) were prepared
containing 1024 HAU/50 μL. The codon usage for GFP1-10 cDNA, which
was described previously [13], was optimized for chicken cells and
artificially synthesized (GenScript Corp., NJ. USA). It was cloned into
pCAG-Bsd expression vector (Wako Inc., Japan) to make pCAG-GFP1-10.

2.2. Proliferation in embryonated chicken eggs

Virus titers were determined using 10-d old embryonated
chicken eggs as described previously [16]. Briefly, serially diluted
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Fig. 1. Construction of recombinant GFP11-2A-NP segment. (a) Schematic representation
arrayed sequence as follows: 1, 3′ non-coding region and 60 bp nucleotide derived from
signal (3′APS); 2, Kozak sequence; 3, GFP11; 4, 2A peptide; 5, NP; 6, 5′ noncoding region;
of 2A peptide. The RNA is shown in negative sense orientation. (b) Positive sense sequen
derived from the 5′ end of the coding region of NP cDNA with three mutations (black and
virus samples were inoculated into the allantoic cavity of the
embryonated eggs and incubated at 37°C for 48 h. Fifty microliters of
allantoic fluids of the eggs were collected and the hemagglutination
activity against 0.55% vol/vol chicken red blood cell was examined.
Fifty percent chicken embryo infectious doses per milliliter (EID50/mL)
was calculated using the positive ratio of the hemagglutination
activity by the method of Reed and Muench [17].

Growth efficiency of rCY55/GFP11-2A-NP and a
reverse-genetically-constructed wild type CY55 virus (rCY55/wNP)
was compared by inoculating 1.0 × 102 EID50 of virus into allantoic
cavities of twelve 10-d old embryonated eggs and incubating at
37°C for either 24 or 48 h. The allantoic fluids of the eggs were
collected and EID50/mL of the fluids was determined as mentioned
above. Statistical significance of the mean titers was determined
using unpaired t tests at 95% confidence level using Prism
(GraphPad Software, CA).

2.3. Fluorescent visualization of cultured chicken cells infected with
rCY55/GFP11-2A-NP

Approximately 25 × 106 primary cultured chicken kidney (CK) cells
and LMH, a chicken hepatocellular carcinoma epithelial cell line,
suspended in 500 μL of OPTI-MEM (Life Technologies Inc., MD, USA)
were transiently transfected with 40 μg of pCAG-GFP1-10 by
electroporation in a 0.4 cm electroporation cuvette at 950 μF and
270 V using a Gene Pulser Xcell II with PC and EC modules (Bio-Rad,
CA). After electroporation, cells were diluted in 2 mL of MEM or
Weymouth's medium supplemented with 10% FBS and cultured in
6-well plates. To investigate the fluorescence of rCY55/GFP11-2A-NP
recombinant virus in pCAG-GFP1-10 transfected CK cells, 1.0 × 104 EID50

of virus was inoculated into each well at 24 h after electroporation.
After incubation, cells were fixed in 4% (vol/vol) formaldehyde/PBS for
5 min and nuclei were stained with 4′,6-diamidino-2-phenylindole
(DAPI). Images of transmitted light, infected cells (with fluorescence by
reassembled split-GFP) and nuclei of cells (stained with DAPI) were
captured using EVOS Cell Imaging system (Life Technologies Inc.)
with ×40 objective lens. To investigate dose dependency of the
split-GFP based visualization system, 1.0 × 102 or 5.0 × 102 EID50,
and 1.0 × 102, 2.0 × 102, 5.0 × 102 or 1.0 × 103 EID50 of virus were
inoculated into pCAG-GFP1-10 transfected CK and LMH cells,
AAACGATCTTACGAACAGATGGAAACTGGTGGAGAACGCCAG-
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3′ end of the coding region with three mutations arranged as 3′ artificial packaging
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respectively, and the numbers of fluorescent and non-fluorescent
cells were calculated. The differences of ratio of fluorescent cells
were statically analyzed with unpaired t tests (CK) or one-way
analysis of variance and the Bonferroni's multiple comparison
post-test (LMH) at 95% confidence level using Prism software.

3. Results and discussion

The stability of the inserted sequence in rCY55/GFP11-2A-NP
was evaluated by serial passage in embryonated eggs from the
stock culture. Sequences of the stock culture and the 10th-passaged
viruses were determined by RT-PCR (amplicons are shown in Fig. 1a),
followed by direct sequencing with an ABI PRISM Genetic Analyzer
(Life Technologies Inc.). Nucleotide mutations in the GFP11-2A
region of GFP11-2A-NP genomic segment were not detected in the
10th-passaged virus (data not shown), demonstrating that the
inserted artificial sequence was stably inherited by progeny viruses
during propagation in embryonated chicken eggs.

Growth efficacy of rCY55/GFP11-2A-NP and rCY55/wNP in
embryonated chicken eggs was compared. The mean titer of
rCY55/GFP11-2A-NP was approximately 102.11 EID50/mL lower
than the mean titer of rCY55/wNP at 24 h post-inoculation with
statistical significance. No significant difference was observed
when the incubation period was extended to 48 h (Fig. 2a). This
suggests that proliferation of rCY55/GFP11-2A-NP was slower than
rCY55/wNP, although the viral titers in the plateau phases were
similar in the embryonated eggs.

Replication of rCY55/GFP11-2A-NP in GFP1-10-transfected CK cells was
visualized at 96 h post inoculation (Fig. 2b–e) and the fluorescent signal
was detected in the cytoplasm and nucleus of the cells. This suggests
that the GFP11 marker translated from GFP11-2A-NP cDNA was present
in the cytoplasm separate from the NP. The GFP11 marker and
transiently transfected GFP1-10 do not possess organelle-localization
signals and can assemble in whole cell. However, the fluorescent signal
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Fig. 2. Replication of rCY55/GFP11-2A-NP. (A) Viral replication in embryonated eggs. Allantoic
and rCY55/GFP11-2A-NP (open symbols). The eggs were incubated at 37°C for 24 h (circles)
doses per milliliter (EID50/mL) of collected allantoic fluid samples were determined. *: P b

chicken kidney cells which have been transfected with the GFP1-10 plasmid were infected w
light cubes for the (b) transmitted light, (c) GFP and (d) DAPI, and merged into an image (e
GFP1-10 transfected (f) CK and (g) LMH inoculated with indicated doses of rCY55/GFP11-2A-NP
in the nuclei of some cells was stronger than in the cytosol, indicating
that some fractions of translated protein from GFP11-2A-NP cDNA
existed in an uncleaved form. Because the efficacy of 2A cleavage
depends on the sequence and host species [18,19], modification of
the 2A sequence in the artificial vRNA might have reduced the
nuclear signal. In addition, it is suggested that the fused GFP11-2A
polypeptide of uncleaved form of GFP11-2A-NP interferes the NP
function in virus replication resulting the reduction of growth
efficacy of rCY55/GFP11-2A-NP as mentioned above. The improvement
of cleavage efficacy by modification of the 2A sequence might also
improve the reduction of virus replication.

To investigate the quantitativity of the method, different doses of
rCY55/GFP11-2A-NP were inoculated and ratio of fluorescent cells was
compared (Fig. 2f and Fig. 2g). Increase of fluorescent cells was shown
to be in proportion to dosage of the virus inoculated to the cultured
cells, although the number of fluorescent cells was found to differ
between GFP1-10 transfected CK cells and LMH cells when the same
dose of rCY55/GFP11-2A-NP virus was inoculated. Such difference
appeared to reflect different susceptibility of the cells to the virus and
cytopathic effect of the virus to the cells. These results suggested that
the method could be used, within a range that depends on the cells
used, to evaluate the number of infected cells and to follow infection
by the virus.

The system described in this study will be useful for visualizing
AIV-infected chicken cells. Features of our system were 1) all
influenza-derived sequences of the recombinant virus genome
originated from an AIV, CY55; and 2) the split-GFP system was used
for visualization. Most, if not all attempts to construct recombinant
influenza viruses with a GFP reporter appear to encounter difficulty
with inserting relatively large fluorescent proteins within an influenza
viral RNA segment. Wild type GFP isolated from Aequorea victoria has
a molecular weight of 27 kDa and is encoded by a 714 bp cDNA [20].
Although the length of GFP reporters varies depending on biological
origin and artificial modification of the reporter protein, the length of
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eight-influenza virus RNAs ranged from approximately 890 to 2340 nt.
The split-GFP system is an ingenious strategy to reduce the size of the
insertion into an influenza viral segment. Previously, Avilov et al. [7]
used the system to produce a recombinant A/WSN/33 virus which
allowed expression of individually fluorescent PB2 polymerase
subunits in infected cells [7]. In their study, GFP11 was fused to the
PB2 protein and translated as a fusion protein in infected cells [7].
In our study, GFP11 was encoded as a marker rather than fused to viral
proteins in rCY55/GFP11-2A-NP. The inserted marker protein was
designed so that it would not interfere with the function of NP
because the expressed NP translated from the artificial GFP11-2A-NP
vRNA only possesses three additional AA (P, which is derived from the
carboxyl C-terminal end of 2A, and EF, which are translated from the
linker sequence between 2A and NP) on the N-terminal side. This
strategy may also be useful for generation of recombinant AIVs which
express external genes for further studies.

In summary, a novel method for the construction of a visualization
system in AIV-infected chicken cells was reported in this study. This
method provides the basis for understanding AIV infection dynamics
in cells of the natural host.
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